Structured Support Vector Machine Hung-yi Lee

Structured Learning

- We need a more powerful function *f*
 - Input and output are both objects with structures
 - Object: sequence, list, tree, bounding box ...

Unified Framework

Step 1: Training

- Find a function F $F: X \times Y \rightarrow R$
- F(x,y): evaluate how compatible the objects x and y is

Step 2: Inference (Testing)

• Given an object x

$$\widetilde{y} = \arg \max_{y \in Y} F(x, y)$$

Three Problems

Problem 1: Evaluation

• What does F(x,y) look like?

Problem 2: Inference

• How to solve the "arg max" problem

$$y = \arg \max_{y \in Y} F(x, y)$$

Problem 3: Training

• Given training data, how to find F(x,y)

Example Task: Object Detection

Example Task

Keep in mind that what you will learn today can be applied to other tasks.

Source of image:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.6007&rep=rep1&type=pdf http://www.vision.ee.ethz.ch/~hpedemo/gallery.php

Problem 1: Evaluation

• F(x,y) is linear

Open question: What if F(x,y) is not linear?

Problem 2: Inference $\tilde{y} = \arg \max_{y \in \mathbb{Y}} w \cdot \phi(x, y)$)=1.1 *w*∙*φ*(w•¢()=8.2 max w∙¢()=0.3 *w*∙*φ*()=10.1 ••••• $\widetilde{oldsymbol{ u}}$ *w*•φ($w \cdot \phi($ =-1.5 =5.6 ••••

Problem 2: Inference

"I think you should be more explicit here in step two."

http://www.condenaststore.com/-sp/I-think-you-should-be-more-explicit-here-in-step-two-Cartoon-Prints_i8562937_.htm

- Object Detection
 - Branch and Bound algorithm
 - Selective Search
- Sequence Labeling
 - Viterbi Algorithm
- The algorithms can depend on φ(x, y)
- Genetic Algorithm
- Open question:
 - What happens if the inference is non exact?

Problem 3: Training

Principle

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$ We should find F(x,y) such that

Let's ignore problems 1 and 2 and only focus on problem 3 today.

Outline

Outline

Assumption: Separable

• There exists a weight vector \widehat{w}

Structured Perceptron

- Input: training data set $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$
- **<u>Output</u>**: weight vector w
- <u>Algorithm</u>: Initialize w = 0
 - do
 - For each pair of training example (x^n, \hat{y}^n)
 - Find the label \tilde{y}^n maximizing $w \cdot \phi(x^n, y)$

$$\widetilde{y}^n = \arg \max_{y \in Y} w \cdot \phi(x^n, y)$$
 (problem 2)

• If
$$\tilde{y}^n \neq \hat{y}^n$$
, update w

$$w \rightarrow w + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n)$$

• until w is not updated We are done!

Warning of Math

In separable case, to obtain a \hat{w} , you only have to update at most $(R/\delta)^2$ times

 δ : margin

R: the largest distance between $\phi(x, y)$ and $\phi(x, y')$

Not related to the space of y!

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1}\text{)}$$

Remind: we are considering the separable case

Assume there exists a weight vector \hat{w} such that

 $\forall n$ (All training examples)

 $\forall y \in Y - \{\hat{y}^n\}$ (All incorrect label for an example)

$$\hat{w} \cdot \phi(x^n, \hat{y}^n) \ge \hat{w} \cdot \phi(x^n, y) + \delta$$

Assume $\|\widehat{w}\| = 1$ without loss of generality

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w^k is smaller as k increases

Analysis $\cos \rho_k$ (larger and larger?) $\cos \rho_k = \frac{|\hat{w} \cdot w^{\kappa}|}{||\hat{w}||} \cdot \frac{|\hat{w}^{\kappa}||}{||w^{\kappa}||}$ $\hat{w} \cdot w^k = \hat{w} \cdot (w^{k-1} + \phi(x^n, \hat{y}^n) - \phi(x^n, \tilde{y}^n))$ $= \hat{w} \cdot w^{k-1} + \hat{w} \cdot \phi(x^n, \hat{y}^n) - \hat{w} \cdot \phi(x^n, \tilde{y}^n) \ge \hat{w} \cdot w^{k-1} + \delta$ $\ge \delta$ (Separable)

w is updated once it sees a mistake

$$w^{0} = 0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \dots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \dots$$
$$w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \text{ (the relation of } w^{k} \text{ and } w^{k-1})$$

Proof that: The angle ρ_k between \hat{W} and w^k is smaller as k increases

Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k} = \frac{\hat{w} \cdot w^{k}}{\|\hat{w}\| \cdot \|w^{k}\|}$ $\hat{w} \cdot w^{k} \ge \hat{w} \cdot w^{k-1} + \delta$ $\stackrel{=0}{\hat{w} \cdot w^{1}} \ge \hat{w} \cdot w^{0} + \delta$ $\hat{w} \cdot w^{2} \ge \hat{w} \cdot w^{1} + \delta$ $\hat{w} \cdot w^{1} \ge \delta$ $\hat{w} \cdot w^{2} \ge 2\delta$ $\hat{w} \cdot w^{k} \ge k\delta$ (so what)

$$\cos \rho_{k} = \frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\|w^{k}\|} \qquad w^{k} = w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}) \\ \|w^{k}\|^{2} = \|w^{k-1} + \phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} \\ = \|w^{k-1}\|^{2} + \|\frac{\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n})\|^{2} + 2w^{k-1} \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, \tilde{y}^{n}))}{20} \\ > 0 \qquad ? < 0 \text{ (mistake)} \\ \text{Assume the distance between any two feature vectors is smaller than R}} \qquad \|w^{1}\|^{2} \le \|w^{0}\|^{2} + R^{2} = R^{2} \\ \|w^{k-1}\|^{2} + R^{2} \qquad \qquad \cdots \\ \|w^{k}\|^{2} \le kR^{2} \end{cases}$$

End of Warning

In separable case, to obtain a \hat{w} , you only have to update at most $(R/\delta)^2$ times

 δ : margin

R: the largest distance between $\phi(x, y)$ and $\phi(x, y')$

Not related to the space of y!

How to make training fast?

Outline

Non-separable Case

Undoubtedly, w' is better than w''.

• When the data is non-separable, some weights are still better than the others.

Defining Cost Function

• Define a cost C to evaluate how bad a w is, and then pick the w minimizing the cost C

(Stochastic) Gradient Descent

Find w minimizing the cost C

$$C = \sum_{n=1}^{N} C^{n}$$
$$C^{n} = \max_{y} [w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$$

(Stochastic) Gradient descent:

We only have to know how to compute ∇C^n .

However, there is "max" in C^n

(Stochastic) Gradient Descent

Randomly pick a training data $\{x^n, \hat{y}^n\}$ stochastic

 $\tilde{y}^{n} = \arg \max_{y} [w \cdot \phi(x^{n}, y)] \longleftarrow \text{ Locate the region}$ $\nabla C^{n} = \phi(x^{n}, \tilde{y}^{n}) - \phi(x^{n}, \hat{y}^{n}) \longleftarrow \text{ simple}$

 $w \to w - \eta \nabla C^n$

$$= w - \eta [\phi(x^n, \tilde{y}^n) - \phi(x^n, \hat{y}^n)]$$

If we set $\eta = 1$, then we are doing structured perceptron.

Outline

Based on what we have considered

The right case is better.

Considering the incorrect ones

How to measure the difference

Defining Error Function

• $\Delta(\hat{y}, y)$: difference between \hat{y} and y (>0)

A(y): area of bounding box y

$$\Delta(\hat{y}, y) = 1 - \frac{A(\hat{y}) \cap A(y)}{A(\hat{y}) \cup A(y)}$$

Gradient Descent $C^{n} = \max_{y} [w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$ $C^{n} = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$

In each iteration, pick a training data $\{x^n, \hat{y}^n\}$

$$\begin{split} \widetilde{y}^{n} &= \arg \max_{y} [w \cdot \phi(x^{n}, y)] \arg \max_{y} [\Delta(\widehat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] \\ \underline{Oh \ no! \ Problem \ 2.1}} \\ \nabla C^{n}(w) &= \phi(x^{n}, \widetilde{y}^{n}) - \phi(x^{n}, \widehat{y}^{n}) \\ w \to w - \eta [\phi(x^{n}, \widetilde{y}^{n}) - \phi(x^{n}, \widehat{y}^{n})] \\ \overline{y}^{n} \end{split}$$

Another Viewpoint

$$\tilde{y}^n = \arg\max_y w \cdot \phi(x^n, y)$$

• Minimizing the new cost function is minimizing the upper bound of the errors on training set

$$C' = \sum_{n=1}^{N} \Delta(\hat{y}^n, \tilde{y}^n) \leq C = \sum_{n=1}^{N} C^n \text{ upper bound}$$

We want to find w minimizing C' (errors)

It is hard!

Because y can be any kind of objects, $\Delta(\cdot, \cdot)$ can be any function

C serves as the surrogate of C'

Proof that $\Delta(\hat{y}^n, \tilde{y}^n) \leq C^n$

Another Viewpoint

$$C^{n} = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$$
Proof that $\Delta(\hat{y}^{n}, \tilde{y}^{n}) \leq C^{n}$

$$\Delta(\hat{y}^{n}, \tilde{y}^{n}) \leq \Delta(\hat{y}^{n}, \tilde{y}^{n}) + [w \cdot \phi(x^{n}, \tilde{y}^{n}) - w \cdot \phi(x^{n}, \hat{y}^{n})]$$

$$\tilde{y}^{n} = \arg\max_{y} w \cdot \phi(x^{n}, y)$$

$$= [\Delta(\hat{y}^{n}, \tilde{y}^{n}) + w \cdot \phi(x^{n}, \tilde{y}^{n})] - w \cdot \phi(x^{n}, \hat{y}^{n})$$

$$\leq \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$$

$$= C^{n}$$

More Cost Functions

 $\Delta(\hat{y}^n, \tilde{y}^n) \leq C^n$

Margin rescaling:

$$C^n = \max_{y} [\Delta(\hat{y}^n, y) + w \cdot \phi(x^n, y)] - w \cdot \phi(x^n, \hat{y}^n)$$

Slack variable rescaling:

$$C^n = \max_{y} \Delta(\hat{y}^n, y) [1 + w \cdot \phi(x^n, y) - w \cdot \phi(x^n, \hat{y}^n)]$$
Outline

Regularization

- Training data and testing data can have different distribution.
- w close to zero can minimize the influence of mismatch.

Keep the incorrect answer from a margin depending on errors

 $C = \sum_{n=1}^{N} C^{n}$ $C^{n} = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)]$ $- w \cdot \phi(x^{n}, \hat{y}^{n})$

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} C^n$$

Regularization: Find the w close to zero

Regularization

$$C = \sum_{n=1}^{N} C^{n} \qquad \qquad C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} C^{n}$$

In each iteration, pick a training data $\{x^n, \hat{y}^n\}$

ab

$$\bar{y}^{n} = \arg \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)]$$

$$\nabla C^{n} = \phi(x^{n}, \bar{y}^{n}) - \phi(x^{n}, \hat{y}^{n}) + w$$

$$w \rightarrow w - \eta [\phi(x^{n}, \bar{y}^{n}) - \phi(x^{n}, \hat{y}^{n})] - \eta w$$

$$= (1 - \eta)w - \eta [\phi(x^{n}, \bar{y}^{n}) - \phi(x^{n}, \hat{y}^{n})]$$
Weight decay as in DNN

Outline

Find w minimizing C

$$C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} C^{n}$$

$$C^{n} = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$$

$$C^{n} + w \cdot \phi(x^{n}, \hat{y}^{n}) = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)]$$
Are they equivalent? We want to minimize C
For $\forall y$:

$$C^{n} + w \cdot \phi(x^{n}, \hat{y}^{n}) \ge \Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)$$

$$w \cdot \phi(x^{n}, \hat{y}^{n}) - w \cdot \phi(x^{n}, y) \ge \Delta(\hat{y}^{n}, y) - C^{n}$$

Find w minimizing C

$$C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} C^{n}$$

$$C^{n} = \max_{y} [\Delta(\hat{y}^{n}, y) + w \cdot \phi(x^{n}, y)] - w \cdot \phi(x^{n}, \hat{y}^{n})$$

$$||$$
Find w, $\varepsilon^{1}, \dots, \varepsilon^{N}$ minimizing C

$$C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} \varepsilon^{n}$$
For $\forall n$:
For $\forall n$:
For $\forall y$:
 $w \cdot \phi(x^{n}, \hat{y}^{n}) - w \cdot \phi(x^{n}, y) \ge \Delta(\hat{y}^{n}, y) - \varepsilon^{n}$

Find
$$w, \varepsilon^{1}, \dots, \varepsilon^{N}$$
 minimizing C

$$C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} \varepsilon^{n}$$
For $\forall n$:
For $\forall y$:
 $w \cdot \phi(x^{n}, \hat{y}^{n}) - w \cdot \phi(x^{n}, y) \ge \Delta(\hat{y}^{n}, y) - \varepsilon^{n}$

For
$$\forall y \neq \hat{y}^n$$
:
 $w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \ge \Delta(\hat{y}^n, y) - \varepsilon^n, \ \varepsilon^n \ge 0$

If $y = \hat{y}^n : w \cdot \phi(x^n, \hat{y}^n) - w \cdot \phi(x^n, \hat{y}^n) \ge \Delta(\hat{y}^n, \hat{y}^n) - \varepsilon^n$ =0 =0 $\varepsilon^n \ge 0$

v v

Υ

ノ

Find w,
$$\varepsilon^1, \dots, \varepsilon^N$$
 minimizing C

$$C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^N \varepsilon^n$$
For $\forall n$:
For $\forall y \neq \hat{y}^n$:
 $w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \ge \Delta(\hat{y}^n, y) - \varepsilon^n, \ \varepsilon^n \ge 0$

Solve it by the solver in SVM package

Quadratic Programming (QP) Problem

Too many constraints

Outline

Find w,
$$\varepsilon^{1}, \dots, \varepsilon^{N}$$
 minimizing C

$$C = \frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{N} \varepsilon^{n}$$
For $\forall n$:
For $\forall y \neq \hat{y}^{n}$:
 $w \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, y)) \ge \Delta(\hat{y}^{n}, y) - \varepsilon^{n}, \ \varepsilon^{n} \ge 0$

Source of image: http://abnerguzman.com/pub lications/gkb_aistats13.pdf

Cutting Plane Algorithm

Parameter space $(w, \varepsilon^1, \dots \varepsilon^N)$

Color is the value of C which is going to be minimized:

$$C = \frac{1}{2} \|w\|^2 + \lambda \sum_{n=1}^{N} \varepsilon^n$$

For
$$\forall r, \forall y, y \neq \hat{y}^n$$
:
 $\succ w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y))$
 $\geq \Delta(\hat{y}^n, y) - \varepsilon^n$
 $\succ \varepsilon^n \geq 0$

Cutting Plane Algorithm

Although there are lots of constraints, most of them do not influence the solution.

Parameter space $(w, \varepsilon^1, ..., \varepsilon^N)$

Red lines: determine the solution Green line: Remove this constraint will not influence the solution

$$y \in \mathbb{A}^{n}$$

For $\forall r, \forall y, y \neq \hat{y}^{n}$:
$$\gg w \cdot (\phi(x^{n}, \hat{y}^{n}) - \phi(x^{n}, y))$$
$$\geq \Delta(\hat{y}^{n}, y) - \varepsilon^{n}$$
$$\gg \varepsilon^{n} \geq 0$$

 \mathbb{A}^n : a very small set of $y \rightarrow working set$

Cutting Plane Algorithm

Cutting Plane Algorithm

• Strategies of adding elements into working set \mathbb{A}^n

Initialize $\mathbb{A}^n = null$ No constraint at all Solving QP The solution w is the blue point.

Cutting Plane Algorithm

• Strategies of adding elements into *working set* \mathbb{A}^n

There are lots of constraints is violated

Find *the most violated one*

Suppose it is the constraint from y'

Extent the working set

 $\mathbb{A}^n = \mathbb{A}^n \cup \{y'\}$

Cutting Plane Algorithm

• Strategies of adding elements into *working set* \mathbb{A}^n

Find the most violated one

Given w' and ε' from working sets at hand, which constraint is the most violated one?

<u>Constraint</u>: $w \cdot (\phi(x, \hat{y}) - \phi(x, y)) \ge \Delta(\hat{y}, y) - \varepsilon$ Violate a Constraint:

$$w' \cdot \left(\phi(x, \hat{y}) - \phi(x, y)\right) < \Delta(\hat{y}, y) - \varepsilon'$$

Degree of Violation

The most violated one:

$$\arg\max_{y}[\Delta(\hat{y},y) + w \cdot \phi(x,y)]$$

Cutting Plane Algorithm

Given training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$ Working Set $\mathbb{A}^1 \leftarrow null, \mathbb{A}^2 \leftarrow null, \dots, \mathbb{A}^N \leftarrow null$ **Repeat**

 $w \leftarrow \text{Solve a } \mathbb{QP} \text{ with Working Set } \mathbb{A}^1, \mathbb{A}^2, \cdots, \mathbb{A}^N$

QP: Find
$$w, \varepsilon^1 \dots \varepsilon^N$$
 minimizing $\frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^N \varepsilon^n$
For $\forall n$:
For $\forall y \in \mathbb{A}^n$:
 $w \cdot (\phi(x^n, \hat{y}^n) - \phi(x^n, y)) \ge \Delta(\hat{y}^n, y) - \varepsilon^n, \varepsilon^n \ge 0$

Cutting Plane Algorithm

Given training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), \dots, (x^N, \hat{y}^N)\}$ Working Set $\mathbb{A}^1 \leftarrow null, \mathbb{A}^2 \leftarrow null, \dots, \mathbb{A}^N \leftarrow null$ **Repeat**

 $w \leftarrow \text{Solve a } \mathbb{QP} \text{ with Working Set } \mathbb{A}^1, \mathbb{A}^2, \cdots, \mathbb{A}^N$

For each training data (x^n, \hat{y}^n) :

$$\overline{y}^{n} = \arg \max_{y} [\Delta(\widehat{y}^{n}, y) + w \cdot \phi(x^{n}, y)]$$

find the most violated constraints

Update working set $\mathbb{A}^n \leftarrow \mathbb{A}^n \cup \{\overline{y}^n\}$

Until \mathbb{A}^1 , \mathbb{A}^2 , \cdots , \mathbb{A}^N doesn't change any more Return w

Training data:
$$\hat{y}^1$$
 \hat{y}^2 $A^1 = \{ \ x^2 \ x^2 \ x^2 \ w = w^1 \}$

QP: Find
$$w, \varepsilon^{1}, \varepsilon^{2}$$
 minimizing $\frac{1}{2} ||w||^{2} + \lambda \sum_{n=1}^{2} \varepsilon^{n}$
 $w \cdot (\phi(\bigcup_{i \in I} \bigoplus_{i \in I}) - \phi(\bigcup_{i \in I} \bigoplus_{i \in I})) \ge \Delta(\bigcup_{i \in I}) - \varepsilon^{1}$
 $w \cdot (\phi(\bigcup_{i \in I} \bigoplus_{i \in I}) - \phi(\bigcup_{i \in I} \bigoplus_{i \in I})) \ge \Delta(\bigcup_{i \in I}) - \varepsilon^{2}$

Solution: $w = w^1$

Concluding Remarks

Multi-class SVM

$$F(x,y) = w \cdot \phi(x,y)$$

- Problem 1: Evaluation
 - If there are K classes, then we have K weight vectors {w¹, w², ..., w^K}

$$y \in \{1, 2, \dots, k, \dots, K\}$$

$$F(x, y) = w^{y} \cdot \vec{x}$$

$$w = \begin{bmatrix} w^{1} \\ w^{2} \\ \vdots \\ w^{k} \\ \vdots \\ w^{K} \end{bmatrix} \phi(x, y) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vec{x} \\ \vdots \\ 0 \end{bmatrix}$$

Multi-class SVM

• Problem 2: Inference

$$F(x,y) = w^{y} \cdot \vec{x}$$

$$\hat{y} = \arg \max_{y \in \{1, 2, \cdots, k, \cdots, K\}} F(x, y)$$
$$= \arg \max_{y \in \{1, 2, \cdots, k, \cdots, K\}} w^{y} \cdot \vec{x}$$

The number of classes are usually small, so we can just enumerate them.

Multi-class SVM

 $y \in \{ dog, cat, bus, car \}$ $\Delta(\hat{y}^n = dog, y = cat) = 1$ $\Delta(\hat{y}^n = dog, y = bus) = 100$ (defined as your wish)

• Problem 3: Training

Find $w, \varepsilon^1, \cdots, \varepsilon^N$ minimizing C $C = \frac{1}{2} ||w||^2 + \lambda \sum_{n=1}^N \varepsilon^n$ For $\forall n$:For $\forall y \neq \hat{y}^n$:There are only N(K-1) constraints. $\left(w^{\hat{y}^n} - w^y\right) \cdot \hat{x} \ge \Delta(\hat{y}^n, y) - \varepsilon^n, \ \varepsilon^n \ge 0$

$$w \cdot \phi(x^n, \hat{y}^n) = w^{\hat{y}^n} \cdot \vec{x}$$
$$w \cdot \phi(x^n, y) = w^y \cdot \vec{x}$$

Some types of misclassifications may be worse than others.

• Set K = 2 $y \in \{1,2\}$

For
$$\forall y \neq \hat{y}^n$$
:
 $\left(w^{\hat{y}^n} - w^y \right) \cdot \vec{x} = \Delta(\hat{y}^n, y) - \varepsilon^n, \ \varepsilon^n \ge 0$

If y=1:
$$(w^1 - w^2) \cdot \vec{x} \ge 1 - \varepsilon^n$$
 $\implies w \cdot \vec{x} \ge 1 - \varepsilon^n$
w

If y=2:
$$(w^2 - w^1) \cdot \vec{x} \ge 1 - \varepsilon^n \quad \longrightarrow \quad -w \cdot \vec{x} \ge 1 - \varepsilon^n$$

-w

Concluding Remarks

Beyond Structured SVM

• Involving DNN when generating $\phi(x, y)$

Ref: Hao Tang, Chao-hong Meng, Lin-shan Lee, "An initial attempt for phoneme recognition using Structured Support Vector Machine (SVM)," ICASSP, 2010 Shi-Xiong Zhang, Gales, M.J.F., "Structured SVMs for Automatic Speech Recognition," in Audio, Speech, and Language Processing, IEEE Transactions on, vol.21, no.3, pp.544-555, March 2013

Beyond Structured SVM

• Jointly training structured SVM and DNN

Ref: Shi-Xiong Zhang, Chaojun Liu, Kaisheng Yao, and Yifan Gong, "DEEP NEURAL SUPPORT VECTOR MACHINES FOR SPEECH RECOGNITION", Interspeech 2015

Beyond Structured SVM

Replacing Structured SVM with DNN

A DNN with x and y as input and F(x, y) (a scalar) as output

Concluding Remarks

Acknowledgement

- 感謝 盧柏儒 同學於上課時發現投影片上的錯誤
- 感謝 徐翊祥 同學於上課時發現投影片上的錯誤